Effective Screening of SARS-CoV-2 Neutralizing Antibodies in Patient Serum using Lentivirus Particles Pseudotyped with SARS-CoV-2 Spike Glycoprotein

Ritesh Tandon, Dipanwita Mitra, Poonam Sharma, John Bates, Stephen Stray, Gailen Marshall

Like Comment

Received date: 20th May 2020

Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from a recently recovered COVID-19 patient who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.

Read in full at medRxiv.

This is an abstract of a preprint hosted on a preprint server, which is currently undergoing peer review at Scientific Reports. The findings have yet to be thoroughly evaluated, nor has a decision on ultimate publication been made. Therefore, the results reported should not be considered conclusive, and these findings should not be used to inform clinical practice, or public health policy, or be promoted as verified information.



Scientific Reports

Nature Research, Springer Nature